Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jul;24(3):251-62.
doi: 10.1111/j.1574-6976.2000.tb00541.x.

Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions

Affiliations
Free article
Review

Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions

C Therrien et al. FEMS Microbiol Rev. 2000 Jul.
Free article

Abstract

Antibacterial chemotherapy is particularly striking in the family of penicillins and cephalosporins. Over 40 structurally different beta-lactam molecules are available in 73 formulations and the majority of them are currently prescribed for medical use in hospitals. beta-Lactams are well tolerated by humans with few side effects. They interact very specifically with their bacterial target, the D-alanyl-D-alanine carboxypeptidase-transpeptidase usually referred to as DD-peptidase. The outstanding number of beta-lactamases produced by bacteria represent a serious threat to the clinical utility of beta-lactams. The discovery of beta-lactamase inhibitors was thought to solve, in part, the problem of resistance. Unfortunately, bacteria have evolved new mechanisms of resistance to overcome the inhibitory effects of beta-lactamase inactivators. Here, we summarize the diversified mechanistic features of class A beta-lactamases interactions with mechanism-based inhibitors using available microbiological, kinetic and structural data for the prototype TEM beta-lactamases. A brief historical overview of the strategies developed to counteract beta-lactamases will be presented followed by a short description of the chemical events which lead to the inactivation of TEM beta-lactamase by inhibitors from different classes. Finally, an update on the clinical prevalence of natural and inhibitor-resistant enzyme mutants, the total chemical synthesis to design and synthesize a new structure and produced a broad spectrum beta-lactamase inhibitor that mimics the beta-lactam ring, but does not contain it is discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources