Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 May;10(5):512-28.
doi: 10.1093/cercor/10.5.512.

Human temporal lobe activation by speech and nonspeech sounds

Affiliations
Comparative Study

Human temporal lobe activation by speech and nonspeech sounds

J R Binder et al. Cereb Cortex. 2000 May.

Abstract

Functional organization of the lateral temporal cortex in humans is not well understood. We recorded blood oxygenation signals from the temporal lobes of normal volunteers using functional magnetic resonance imaging during stimulation with unstructured noise, frequency-modulated (FM) tones, reversed speech, pseudowords and words. For all conditions, subjects performed a material-nonspecific detection response when a train of stimuli began or ceased. Dorsal areas surrounding Heschl's gyrus bilaterally, particularly the planum temporale and dorsolateral superior temporal gyrus, were more strongly activated by FM tones than by noise, suggesting a role in processing simple temporally encoded auditory information. Distinct from these dorsolateral areas, regions centered in the superior temporal sulcus bilaterally were more activated by speech stimuli than by FM tones. Identical results were obtained in this region using words, pseudowords and reversed speech, suggesting that the speech-tones activation difference is due to acoustic rather than linguistic factors. In contrast, previous comparisons between word and nonword speech sounds showed left-lateralized activation differences in more ventral temporal and temporoparietal regions that are likely involved in processing lexical-semantic or syntactic information associated with words. The results indicate functional subdivision of the human lateral temporal cortex and provide a preliminary framework for understanding the cortical processing of speech sounds.

PubMed Disclaimer

Publication types

LinkOut - more resources