Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May;47(5):654-63.
doi: 10.1109/10.841337.

A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG's

Affiliations

A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG's

J S Paul et al. IEEE Trans Biomed Eng. 2000 May.

Abstract

The proposed filter assumes the noisy electrocardiography (ECG) to be modeled as a signal of deterministic nature, corrupted by additive muscle noise artefact. The muscle noise component is treated to be stationary with known second-order characteristics. Since noise-free ECG is shown to possess a narrow-band structure in discrete cosine transform (DCT) domain and the second-order statistical properties of the additive noise component is preserved due to the orthogonality property of DCT, noise abatement is easily accomplished via subspace decomposition in the transform domain. The subspace decomposition is performed using singular value decomposition (SVD). The order of the transform domain SVD filter required to achieve the desired degree of noise abatement is compared to that of a suboptimal Wiener filter using DCT. Since the Wiener filter assumes both the signal and noise structures to be statistical, with a priori known second-order characteristics, it yields a biased estimate of the ECG beat as compared to the SVD filter for a given value of mean-square error (mse). The filter order required for performing the subspace smoothing is shown to exceed a certain minimal value for which the mse profile of the SVD filter follows the minimum-mean-quare error (mmse) performance warranted by the suboptimal Wiener filter. The effective filter order required for reproducing clinically significant features in the noisy ECG is then set by an upper bound derived by means of a finite precision linear perturbation model. A significant advantage resulting from the application of the proposed SVD filter lies in its ability to perform noise suppression independently on a single lead ECG record with only a limited number of data samples.

PubMed Disclaimer