Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun;47(6):729-38.

Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells

Affiliations
  • PMID: 10852538

Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells

N Villeneuve et al. Ann Neurol. 2000 Jun.

Abstract

We investigated the effects of repeated early-life seizures induced by flurothyl inhalation on intrinsic membrane properties of hippocampal pyramidal neurons from young rats (postnatal day 15-20). Intracellular recordings of CA1 and CA3 pyramidal neurons from flurothyl-treated and control rats revealed no significant differences in resting membrane potential, input resistance, membrane time constant, and action potential characteristics. In CA1 pyramidal cells from flurothyl-treated rats, the spike frequency adaptation and afterhyperpolarizing potential following a spike train were markedly reduced when compared with controls. In contrast, no significant alterations in the firing properties of CA3 pyramidal neurons were found. It is concluded that neonatal seizures lead to persistent changes in intrinsic membrane properties of CA1 pyramidal neurons. These alterations are consistent with an increase in neuronal excitability and may contribute to the behavioral deficit and epileptogenic predisposition observed in rats that experienced repeated neonatal seizures.

PubMed Disclaimer

Publication types

LinkOut - more resources