Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;75(1):9-17.
doi: 10.1046/j.1471-4159.2000.0750009.x.

A systemic administration of NMDA induces immediate early gene pip92 in the hippocampus

Affiliations

A systemic administration of NMDA induces immediate early gene pip92 in the hippocampus

K C Chung et al. J Neurochem. 2000 Jul.

Abstract

In the mammalian CNS, aspartate and glutamate are major excitatory amino acids, and their receptors are believed to mediate a wide range of physiological and pathological processes, including neurotransmission, plasticity, excitotoxicity, and various forms of neurodegeneration. The immediate early gene pip92 has been identified in serum-stimulated BALB/c 3T3 fibroblasts, activated T lymphocytes treated with cycloheximide, and fibroblast growth factor-stimulated hippocampal cells during neuronal differentiation. In this study we have demonstrated that pip92 is expressed in the mouse brain after a single intraperitoneal injection of NMDA. The distribution of pip92 mRNA levels in the NMDA-treated mouse brain was investigated using in situ RT-PCR. The region-specific activation of pip92 in the CNS was observed 3 h after NMDA injection, and high levels of pip92 mRNA were detected in the hippocampal dentate gyrus and piriform cortex regions. In addition, the activation of pip92 by NMDA was mediated by activation of mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK) and p38 kinase, but not extracellular signal-regulated kinase (ERK) in the mouse hippocampus and immortalized rat hippocampal progenitor cells. This study suggests that pip92 is likely to play an important role in neuronal cell death induced by excitotoxic NMDA injury in the CNS.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources