Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;63(1):134-40.
doi: 10.1095/biolreprod63.1.134.

Hyaluronic acid as an anti-angiogenic shield in the preovulatory rat follicle

Affiliations

Hyaluronic acid as an anti-angiogenic shield in the preovulatory rat follicle

C Tempel et al. Biol Reprod. 2000 Jul.

Abstract

Angiogenesis in the preovulatory follicle is confined to the theca cell layers, and penetration of capillaries through the basement membrane into the granulosa cell layers does not occur until after ovulation. However, elevated expression of the angiogenic growth factor (VEGF) has been reported in the cumulus cells surrounding the oocyte, which are expelled from the follicle during ovulation. This spatial and temporal discrepancy between VEGF expression and angiogenesis was studied here in the rat ovarian follicle, and we showed that cumulus cells secrete to the follicular fluid, in addition to VEGF, material with antiangiogenic activity that blocks endothelial cell proliferation, migration, and capillary formation in vitro. Hyaluronic acid produced by the cumulus cells can account for this antiangiogenic activity. Degradation of hyaluronic acid by hyaluronidase restored proliferation and migration of endothelial cells directed toward the cumulus. Inhibition of hyaluronic acid synthesis with 6-diazo-5-oxo-1-norleucine restored endothelial proliferation and migration in vitro, and it also resulted in early penetration of capillaries across the follicular basement membrane in vivo. These results support the role of hyaluronic acid produced by the cumulus cells as a high-molecular-weight, antiangiogenic shield that prevents premature vascularization of the preovulatory follicle by blocking endothelial cell migration and proliferation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources