Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;49(3):457-65.
doi: 10.2337/diabetes.49.3.457.

Dysregulation of the insulin/IGF binding protein-1 axis in transgenic mice is associated with hyperinsulinemia and glucose intolerance

Affiliations

Dysregulation of the insulin/IGF binding protein-1 axis in transgenic mice is associated with hyperinsulinemia and glucose intolerance

P A Crossey et al. Diabetes. 2000 Mar.

Abstract

The insulin/IGF binding protein-1 (IGFBP-1) axis is important in coordinating insulin- and IGF-mediated regulation of glucose metabolism and glycemia. Dysregulation of the axis may play a role in the pathophysiology of disorders of insulin deficiency and resistance. We have investigated this hypothesis by generating transgenic mice that overexpress hIGFBP-1. To study the axis in its true physiological context, we used a human (h) IGFBP-1 cosmid clone so that transgene expression is responsive to normal hormonal stimuli. hIGFBP-1 mRNA is expressed in a tissue-specific fashion, and measurement of serum protein levels by specific immunoassay indicates normal physiological regulation in response to fasting/feeding and appropriate post-translational modification as indicated by the detection of phosphorylated and nonphosphorylated isoforms of the protein. The hypoglycemic response to exogenous IGF-I is attenuated in transgenic mice. Transgenic mice exhibit an enhanced insulin secretory response to a glucose challenge, although basal and stimulated blood glucose levels are similar to controls. There is a sexual dimorphism in phenotypic expression: male transgenic mice had higher stimulated glucose and insulin levels than did females. Transgenic mice exhibit fasting hyperglycemia and hyperinsulinemia and glucose intolerance in later life, indicating an age-related decline in glucocompetence. These findings demonstrate the importance of the normal inverse relationship between serum insulin and IGFBP-1 levels in glucoregulation and that sustained dysregulation of the insulin/IGF-I/IGFBP-1 axis is associated with impaired glucose tolerance and abnormalities of insulin action.

PubMed Disclaimer

Publication types

MeSH terms