Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 7;288(1):71-5.
doi: 10.1016/s0304-3940(00)01172-1.

Neuroprotection of nerve growth factor-loaded microspheres on the D2 dopaminergic receptor positive-striatal neurones in quinolinic acid-lesioned rats: a quantitative autoradiographic assessment with iodobenzamide

Affiliations

Neuroprotection of nerve growth factor-loaded microspheres on the D2 dopaminergic receptor positive-striatal neurones in quinolinic acid-lesioned rats: a quantitative autoradiographic assessment with iodobenzamide

C Gouhier et al. Neurosci Lett. .

Abstract

Huntington's disease (HD) results from the degeneration of striatal neurones, mainly gamma-aminobutyric acid (GABA)ergic projection neurones and lately cholinergic interneurones. The use of trophic factors as agents able to prevent such neural degeneration is a promising strategy. The aim of this study was to validate nerve growth factor-loaded (NGF-loaded) poly-D,L-lactide-co-glycolide (PLGA) microspheres for treatment of HD in a rat model with quinolinic acid lesion using autoradiographic study of D2 dopaminergic receptors (D2R). This target is expressed by about half of striatal neurones and its scintigraphic exploration has already been performed for the follow-up of this degenerative process. Ex vivo autoradiography of D2R performed with iodobenzamide, the widely used ligand for single photo emission computerized tomography, revealed slight neuroprotection. Moreover, tolerance of microspheres was demonstrated by in vitro autoradiography with the marker of gliosis, [(3)H]-PK 11195.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources