Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;294(1):117-25.

Involvement of a receptor-mediated component in cellular translocation of riboflavin

Affiliations
  • PMID: 10871302

Involvement of a receptor-mediated component in cellular translocation of riboflavin

S N Huang et al. J Pharmacol Exp Ther. 2000 Jul.

Abstract

This study addresses the transport mechanism of riboflavin (vitamin B(2)) across intestinal epithelium in the presence and absence of pharmacologically active compounds. A polarized transport process with a 6-fold higher basolateral (BL)-to-apical (AP) flux was observed in both a human intestinal cell model (Caco-2) and rat intestinal tissue. Riboflavin-specific translocation systems on both the AP and BL cell surfaces were saturable with affinity values close to most receptors (K(m): 9.72 +/- 0.85 and 4.06 +/- 0.03 nM, respectively). Pharmacological agents known to alter intracellular endocytic events were used to examine the potential involvement of receptor-mediated events. Nocodazole significantly inhibited AP uptake (58.4%), BL-to-AP riboflavin (56.7%) and fluorescein isothiocyanate-labeled transferrin (FITC-Tf) (31.8%) transport without affecting mannitol or cholic acid transport, whereas AP-to-BL riboflavin (252.8%) and FITC-Tf (145.1%) transport was increased. Brefeldin A significantly enhanced AP-to-BL riboflavin (37.1%) and bidirectional FITC-Tf transport (AP-to-BL: 13-fold; BL-to-AP: 5-fold). without affecting BL-to-AP riboflavin transport. Combined, these data suggest an essential role of microtubule-dependent movement and vesicular sorting component(s) in the bidirectional transport of riboflavin. Dissociation of riboflavin from the cell surface was pH-dependent with significantly higher substrate release at acidic pH, indicating the presence of riboflavin-specific cell surface receptors. In summary, our studies provide biochemical evidence of the involvement of a receptor-mediated mechanism in the cellular translocation of riboflavin.

PubMed Disclaimer

LinkOut - more resources