DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling
- PMID: 10871854
- DOI: 10.1038/sj.onc.1203622
DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling
Abstract
Treatment of cells with DNA-damaging agents, such as etoposide, can cause growth arrest or apoptosis. Treatment of Swiss 3T3 or RAT-1 cells with etoposide led to the dephosphorylation of both p70 S6 kinase and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), resulting in decreased p70 S6 kinase activity and an increase in 4E-BP1 binding to eIF4E. These effects were not prevented by the general caspase inhibitor, Z-VAD.FMK. These findings indicate caspase-independent inhibition of signalling pathways that involve the mammalian target of rapamycin (mTOR). Similar effects were observed in response to two other DNA-damaging agents, cisplatin and mitomycin-C. These events preceded apoptosis, which was assessed by caspase-3 activity assays and FACS analysis. This shows that inhibition of mTOR signalling is not a consequence of apoptosis, although it may play a role in the events that precede cell death. 4E-BP1 was cleaved during apoptosis yielding a fragment that retained the ability to bind eIF4E. Cleavage of 4E-BP1 was inhibited by treatment of the cells with Z-VAD.FMK, indicating it is caspase-dependent. Insulin elicited full activation of p70 S6 kinase and phosphorylation of 4E-PB1 in etoposide-treated cells prior to the onset of apoptosis, but not during cell death. This suggests that mTOR signalling becomes irreversibly inhibited only after entry into apoptosis. Oncogene (2000).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
