Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec;5(6):691-718.
doi: 10.1007/BF01181582.

Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush

Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush

M S Letinsky et al. J Neurocytol. 1976 Dec.

Abstract

Regenerating neuromuscular junctions in the cutaneous pectoris muscle of the frog were examined by light and electron microscopy up to three months after crushing the motor nerve. The aim was to determine the precision of reinnervation of the original synaptic sites. More than 95% of the original postsynaptic membrane is recovered by nerve terminals and little, if any, synaptic contact is made on other portions of the muscle fibre surface. Even after prolonged denervation when the Schwann cells have retracted from 70-80% of the postsynaptic membrane, regenerating terminals return to and cover a large fraction of it. Although synapses are confined to the original synaptic sites, the pattern of innervation of muscle fibres is altered in several ways: (a) regenerating axon terminals can fail to branch leaving small stretches of postsynaptic membrane uncovered; (b) two terminal branches can lie side by side over a stretch of postsynaptic membrane normally occupied by one terminal; and (c) after growing along a stretch of postsynaptic membrane on one muscle fibre, terminals can leave it to end either in extracellular space or on the postsynaptic membrane of another fibre. Altogether the results demonstrate a strong and specific affinity between the original synaptic sites and regenerating nerve terminals.

PubMed Disclaimer

Publication types