Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 8;275(36):27790-8.
doi: 10.1074/jbc.M000540200.

Dual regulation of platelet protein kinase B

Affiliations
Free article

Dual regulation of platelet protein kinase B

C Kroner et al. J Biol Chem. .
Free article

Abstract

Protein kinase B (PKB) is a serine/threonine kinase that is activated by growth hormones and implicated in prevention of apoptosis, glycogen metabolism, and glucose uptake. A key enzyme in PKB activation is phosphatidylinositide 3-kinase (PI-3K), which triggers the dual phosphorylation of PKB by phosphatidylinositol-dependent kinases (PDKs). Here we report that the major PKB subtype in platelets is PKBalpha, which is activated by phosphorylation of Thr(308) and Ser(473) and has a constitutively phosphorylated Thr(450) that does not contribute to PKB activation. alpha-Thrombin and thrombopoietin activate PKBalpha via PI-3K and trigger the concurrent phosphorylation of Thr(308) (via PDK1) and Ser(473) (via a not yet identified PDK2). In addition, alpha-thrombin activates a PI-3K-independent pathway involving phospholipase Cbeta and calcium-dependent protein kinase C subtypes (PKCalpha/beta). This route is specific for phosphorylation of Ser(473) and can be initiated by direct PKC activation with phorbol ester or purified active PKC catalytic fragment in platelet lysate. Different degrees of Ser(473) and Thr(308) phosphorylation correlate with different degrees of enzyme activity. These data reveal a PI-3K-independent PKB activation in which PKCalpha/beta regulates the phosphorylation of Ser(473) in PKBalpha. The independent control of the two phosphorylation sites may contribute to fine regulation of PKBalpha activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources