Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jul;27(7):558-62.
doi: 10.1046/j.1440-1681.2000.03288.x.

Biopharmaceutical considerations in topical ocular drug delivery

Affiliations
Review

Biopharmaceutical considerations in topical ocular drug delivery

N M Davies. Clin Exp Pharmacol Physiol. 2000 Jul.

Abstract

1. Despite the accessibility of the front of the eye, efficient delivery of drug to treat various ocular disorders is a challenge to the formulation scientist. The majority of ophthalmic medications are formulated as eye drops. Due to anatomical constraints, the volume that can be administered is limited to approximately 30 microL. This, together with the efficient clearance system that exists in the front of the eye, makes it difficult to maintain an effective pre-ocular drug concentration for a desired length of time. Various formulation strategies have been used to increase pre-ocular retention of eye drops. The most successful of these has been the inclusion of viscosity enhancing polymers, particularly those able to interact with the mucous layer on the eye surface or those that can undergo a transition from a solution to a gel under the conditions of the pre-ocular area. 2. When the target site is intra-ocular, drug must be absorbed from the pre-ocular region into the eye. The main route for absorption is across the cornea. However, absorption of drug across the cornea is inefficient due to its impermeable nature and small surface area. Thus, the intra-ocular bioavailability of topically administered medications is typically less than 10%. 3. Corneal permeability favours moderately lipophilic compounds. These compounds often have a low aqueous solubility. Problems in ocular drug delivery and formulation are compounded for poorly soluble drugs that must be formulated as suspensions. 4. Reformulation of ophthalmic suspensions as solutions has many advantages. This may be achieved by complexation using cyclodextrins. Solubilization using cyclodextrins can overcome many of the formulation problems. However, it is unclear as to their potential for improving ocular bioavailability, which is seemingly drug dependent and may be influenced by both the physicochemical properties of the drug and the complex formed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources