Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;141(7):2658-66.
doi: 10.1210/endo.141.7.7579.

Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D

Affiliations

Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D

R St-Arnaud et al. Endocrinology. 2000 Jul.

Abstract

The 25-hydroxyvitamin D-24-hydroxylase enzyme (24-OHase) is responsible for the catabolic breakdown of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of vitamin D. The 24-OHase enzyme can also act on the 25-hydroxyvitamin D substrate to generate 24,25-dihydroxyvitamin D, a metabolite whose physiological importance remains unclear. We report that mice with a targeted inactivating mutation of the 24-OHase gene had impaired 1,25(OH)2D catabolism. Surprisingly, complete absence of 24-OHase activity during development leads to impaired intramembranous bone mineralization. This phenotype was rescued by crossing the 24-OHase mutant mice to mice harboring a targeted mutation in the vitamin D receptor gene, confirming that the elevated 1,25(OH)2D levels, acting through the vitamin D receptor, were responsible for the observed accumulation of osteoid. Our results confirm the physiological importance of the 24-OHase enzyme for maintaining vitamin D homeostasis, and they reveal that 24,25-dihydroxyvitamin D is a dispensable metabolite during bone development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms