Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May;186(5):425-34.
doi: 10.1007/s003590050442.

Pupillary dilation response as an indicator of auditory discrimination in the barn owl

Affiliations

Pupillary dilation response as an indicator of auditory discrimination in the barn owl

A D Bala et al. J Comp Physiol A. 2000 May.

Abstract

The pupil of an awake, untrained, head-restrained barn owl was found to dilate in response to sounds with a latency of about 25 ms. The magnitude of the dilation scaled with signal-to-noise ratio. The dilation response habituated when a sound was repeated, but recovered when stimulus frequency or location was changed. The magnitude of the recovered response was related to the degree to which habituating and novel stimuli differed and was therefore exploited to measure frequency and spatial discrimination. Frequency discrimination was examined by habituating the response to a reference tone at 3 kHz or 6 kHz and determining the minimum change in frequency required to induce recovery. We observed frequency discrimination of 125 Hz at 3 kHz and 250 Hz at 6 kHz--values comparable to those reported by others using an operant task. Spatial discrimination was assessed by habituating the response to a stimulus from one location and determining the minimum horizontal speaker separation required for recovery. This yielded the first measure of the minimum audible angle in the barn owl: 3 degrees for broadband noise and 4.5 degrees for narrowband noise. The acoustically evoked pupillary dilation is thus a promising indicator of auditory discrimination requiring neither training nor aversive stimuli.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources