Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2000 Jul;111(7):1165-74.
doi: 10.1016/s1388-2457(00)00293-5.

Task dependence of Ia presynaptic inhibition in human wrist extensor muscles: a single motor unit study

Affiliations
Clinical Trial

Task dependence of Ia presynaptic inhibition in human wrist extensor muscles: a single motor unit study

J M Aimonetti et al. Clin Neurophysiol. 2000 Jul.

Abstract

Objective: Task-dependent changes in the Ia presynaptic inhibition generated by flexor group I afferents were investigated in 25 identified motor units (MUs) located in human extensor carpi radialis (ECR) muscles.

Methods: Seven subjects had to voluntarily contract their ECR muscles either alone during isometric wrist extension or concurrently with their wrist and finger flexor muscles while clenching their hand around a manipulandum. The MU reflex responses to the radial nerve stimulation (test stimulation) yielded narrow peaks in the post-stimulus time histograms (PSTH). The Ia presynaptic inhibition induced while stimulating the median nerve (conditioning stimulation) 20 and 40 ms before the radial nerve was assessed from the changes in the contents of the first 0.5 ms in the peaks.

Results: With both stimulation intervals, the Ia presynaptic inhibition, as assessed from the first 0.5 ms of the PSTH peaks, was consistently weaker during hand clenching. With both motor tasks, the Ia presynaptic inhibition was strongest at the 20 ms interval, in which it showed a downward gradient, working from slow to fast contracting MUs. With both intervals, the presynaptic inhibition was consistently weaker during hand clenching. The decrease in the Ia presynaptic inhibition observed at the 40 ms conditioning-test interval was less pronounced during wrist extension.

Conclusion: It is suggested that the reason why Ia presynaptic inhibition was weaker during hand clenching may have been that this task involved numerous cutaneous inputs originating from the palm and finger tips. During gripping tasks, these cutaneous inputs may therefore contribute to adjusting the wrist stiffness by relieving the presynaptic inhibition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources