Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Apr;50(2):171-86.
doi: 10.2170/jjphysiol.50.171.

Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation

Affiliations
Free article
Review

Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation

Y Takei. Jpn J Physiol. 2000 Apr.
Free article

Abstract

The origin of life took place in the ancient sea where the ionic concentration is thought to have been somewhat lower than that of the present day seas. This may partly explain why most vertebrate species have plasma ionic concentrations roughly one-third of seawater. Exceptions are primitive marine cyclostomes whose plasma is almost identical to seawater, and marine cartilaginous fishes that accumulate urea in plasma to increase osmolarity to a seawater level. The mechanisms for regulation of water and electrolyte balance should have evolved from these animals into those of more advanced ones in which plasma ions are regulated to one-third of seawater irrespective of the habitat. Although most extant terrestrial and aquatic animals maintain similar plasma osmolarity and ionic concentrations, the mechanisms of regulation differ greatly among different groups of animals according to their habitat. An outstanding difference is that while plasma Na(+) concentration is a primary factor of regulation in terrestrial mammals and birds, blood volume is most strictly regulated in aquatic teleost fishes. Consistently, while an increase in plasma osmolarity (cellular dehydration) is a major dipsogenic stimulus for birds and mammals, hypovolemia (extracellular dehydration) is a much stronger stimulus for elicitation of drinking in teleost fishes. Furthermore, fish cells in culture are tolerant to changes in environmental osmolarity compared with mammalian cells, further suggesting a secondary role of plasma osmolarity as a target of regulation in fishes. A secondary role of blood volume for body fluid regulation in birds is further assessed by the fact that volume receptors for thirst, salt gland secretion, and vasotocin secretion are localized in the extravascular, interstitial space in some species of birds. All terrestrial animals including mammals have derived from the fishes in phylogeny, during which the mechanisms for body fluid regulation underwent adaptive evolution in the course of transition from aquatic to terrestrial life. Therefore, much can be learned from comparative studies of body fluid regulation that reveals the diversity and uniformity of the mechanisms. In this review, important comparative studies that may contribute to an understanding of body fluid regulation throughout vertebrate species will be summarized.

PubMed Disclaimer

LinkOut - more resources