Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Jul;115(1):57-61.
doi: 10.1046/j.1523-1747.2000.00014.x.

Tumor antigen presentation by dermal antigen-presenting cells

Affiliations
Free article
Comparative Study

Tumor antigen presentation by dermal antigen-presenting cells

K Campton et al. J Invest Dermatol. 2000 Jul.
Free article

Abstract

Several phenotypes of antigen-presenting cells are present in the dermis, where they presumably function to present encountered antigens for immune responses. This study examined the ability of dermal antigen-presenting cells to present tumor-associated antigens for the induction of in vivo antitumor immunity. Total murine dermal cells were exposed either to medium alone or to medium containing tumor-associated antigens from S1509a tumor cells. Subsequently, dermal cells were injected subcutaneously at weekly intervals into naïve mice for a total of three immunizations. One week following the final immunization, mice were challenged with living tumor cells. In these experiments, dermal cells pulsed with tumor-associated antigens induced protective immunity to tumor growth. Dermal cells exposed to tumor-associated antigens were also able to elicit delayed-type hypersensitivity after footpad injection into mice previously immunized against S1509a tumor cells. The ability to present tumor-associated antigens for both induction of antitumor immunity and elicitation of delayed-type hypersensitivity was dependent on I-A+ cells and was genetically restricted. Finally, dermal cells tended towards eliciting a greater antitumor delayed-type hypersensitivity response than epidermal cells. These results show that the murine dermis contains antigen-presenting cells capable of processing S1509a tumor antigens for the generation of protective antitumor immunity in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources