poliota, a remarkably error-prone human DNA polymerase
- PMID: 10887158
- PMCID: PMC316739
poliota, a remarkably error-prone human DNA polymerase
Abstract
The Saccharomyces cerevisiae RAD30 gene encodes DNA polymerase eta. Humans possess two Rad30 homologs. One (RAD30A/POLH) has previously been characterized and shown to be defective in humans with the Xeroderma pigmentosum variant phenotype. Here, we report experiments demonstrating that the second human homolog (RAD30B), also encodes a novel DNA polymerase that we designate poliota. poliota, is a distributive enzyme that is highly error-prone when replicating undamaged DNA. At template G or C, the average error frequency was approximately 1 x 10(-2). Our studies revealed, however, a striking asymmetry in misincorporation frequency at template A and T. For example, template A was replicated with the greatest accuracy, with misincorporation of G, A, or C occurring with a frequency of approximately 1 x 10(-4) to 2 x 10(-4). In dramatic contrast, most errors occurred at template T, where the misincorporation of G was, in fact, favored approximately 3:1 over the correct nucleotide, A, and misincorporation of T occurred at a frequency of approximately 6.7 x 10(-1). These findings demonstrate that poliota is one of the most error-prone eukaryotic polymerases reported to date and exhibits an unusual misincorporation spectrum in vitro.
Figures
References
-
- Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–2195. - PubMed
-
- Bambara RA, Fay PJ, Mallaber LM. Methods of analyzing processivity. Methods Enzymol. 1995;262:270–280. - PubMed
-
- Boosalis MS, Petruska J, Goodman MF. DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J Biol Chem. 1987;262:14689–14696. - PubMed
-
- Boosalis MS, Mosbaugh DW, Hamatake R, Sugino A, Kunkel TA, Goodman MF. Kinetic analysis of base substitution mutagenesis by transient misalignment of DNA and by miscoding. J Biol Chem. 1989;264:11360–11366. - PubMed
-
- Chagovetz AM, Sweasy JB, Preston BD. Increased activity and fidelity of DNA polymerase β on single-nucleotide gapped DNA. J Biol Chem. 1997;272:27501–27504. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases