Growth factor delivery for tissue engineering
- PMID: 10888299
- DOI: 10.1023/a:1007502828372
Growth factor delivery for tissue engineering
Abstract
A tissue-engineered implant is a biologic-biomaterial combination in which some component of tissue has been combined with a biomaterial to create a device for the restoration or modification of tissue or organ function. Specific growth factors, released from a delivery device or from co-transplanted cells, would aid in the induction of host parenchymal cell infiltration and improve engraftment of co-delivered cells for more efficient tissue regeneration or ameliorate disease states. The characteristic properties of growth factors are described to provide a biological basis for their use in tissue engineered devices. The principles of polymeric device development for therapeutic growth factor delivery in the context of tissue engineering are outlined. A review of experimental evidence illustrates examples of growth factor delivery from devices such as microparticles, scaffolds, and encapsulated cells, for their use in the application areas of musculoskeletal tissue, neural tissue, and hepatic tissue.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources