Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Jun;79(6):1385-91.
doi: 10.1177/00220345000790060601.

In vivo degradation of resin-dentin bonds in humans over 1 to 3 years

Affiliations
Comparative Study

In vivo degradation of resin-dentin bonds in humans over 1 to 3 years

M Hashimoto et al. J Dent Res. 2000 Jun.

Abstract

The longevity of resin restorations is currently an area of great interest in adhesive dentistry. However, no work has been conducted to investigate the durability of resin-dentin bond structures using human substrate in vivo. The purpose of this study was to investigate the degradation of the resin-dentin bond structures aged in an oral environment for 1, 2, or 3 years. Cavities were prepared in primary molars, and an adhesive resin system (Scotchbond Multi-Purpose) was applied to the cavity. After 1 to 3 years, following the eruption of the succedaneous permanent teeth, the resin-restored teeth were extracted. Immediately after extraction, those teeth were sectioned perpendicular to the adhesive interface and trimmed to produce an hourglass-shaped specimen. Then, a micro-tensile test was performed at a crosshead speed of 1.0 mm/min. The mean bond strengths were statistically compared with one-way ANOVA and Fisher's PLSD test (p < 0.05). Further, all fractured surfaces were observed by SEM, and the area fraction of failure mode was calculated by means of a digital analyzer on SEM photomicrographs. There were significant differences in tensile-bond strength among all 3 groups (p < 0.05), with mean values ranging from 28.3 +/- 11.3 MPa (control), to 15.2 +/- 4.4 MPa (1 to 2 years), to 9.1 +/- 5.1 MPa (2 to 3 years). Moreover, under fractographic analysis, the proportion of demineralized dentin at the fractured surface in specimens aged in an oral environment was greater than that in control specimens. Furthermore, degradation of resin composite and the depletion of collagen fibrils was observed among the specimens aged in an oral environment. Analysis of the results of this study indicated that the degradation of resin-dentin bond structures occurs after aging in the oral cavity.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources