Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge
- PMID: 10890922
- PMCID: PMC26943
- DOI: 10.1073/pnas.150338197
Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge
Abstract
Diffusion of molecules in brain extracellular space is constrained by two macroscopic parameters, tortuosity factor lambda and volume fraction alpha. Recent studies in brain slices show that when osmolarity is reduced, lambda increases while alpha decreases. In contrast, with increased osmolarity, alpha increases, but lambda attains a plateau. Using homogenization theory and a variety of lattice models, we found that the plateau behavior of lambda can be explained if the shape of brain cells changes nonuniformly during the shrinking or swelling induced by osmotic challenge. The nonuniform cellular shrinkage creates residual extracellular space that temporarily traps diffusing molecules, thus impeding the macroscopic diffusion. The paper also discusses the definition of tortuosity and its independence of the measurement frame of reference.
Figures







Similar articles
-
Diffusion of molecules in brain extracellular space: theory and experiment.Prog Brain Res. 2000;125:129-54. doi: 10.1016/S0079-6123(00)25007-3. Prog Brain Res. 2000. PMID: 11098654 Review.
-
Contribution of dead-space microdomains to tortuosity of brain extracellular space.Neurochem Int. 2004 Sep;45(4):467-77. doi: 10.1016/j.neuint.2003.11.011. Neurochem Int. 2004. PMID: 15186912 Review.
-
Unified model of brain tissue microstructure dynamically binds diffusion and osmosis with extracellular space geometry.Phys Rev E. 2016 Sep;94(3-1):032411. doi: 10.1103/PhysRevE.94.032411. Epub 2016 Sep 27. Phys Rev E. 2016. PMID: 27739821
-
Independence of extracellular tortuosity and volume fraction during osmotic challenge in rat neocortex.J Physiol. 2002 Jul 15;542(Pt 2):515-27. doi: 10.1113/jphysiol.2002.017541. J Physiol. 2002. PMID: 12122149 Free PMC article.
-
Gliotoxin-induced swelling of astrocytes hinders diffusion in brain extracellular space via formation of dead-space microdomains.Glia. 2014 Jul;62(7):1053-65. doi: 10.1002/glia.22661. Epub 2014 Mar 31. Glia. 2014. PMID: 24687699 Free PMC article.
Cited by
-
Poly[N-(2-hydroxypropyl)methacrylamide] polymers diffuse in brain extracellular space with same tortuosity as small molecules.Biophys J. 2001 Jan;80(1):542-8. doi: 10.1016/S0006-3495(01)76036-5. Biophys J. 2001. PMID: 11159424 Free PMC article.
-
Brain lateralization probed by water diffusion at the atomic to micrometric scale.Sci Rep. 2019 Oct 11;9(1):14694. doi: 10.1038/s41598-019-51022-1. Sci Rep. 2019. PMID: 31604980 Free PMC article.
-
Modelling of the physiological response of the brain to ischaemic stroke.Interface Focus. 2013 Apr 6;3(2):20120079. doi: 10.1098/rsfs.2012.0079. Interface Focus. 2013. PMID: 24427526 Free PMC article.
-
Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles.Brain Res. 2007 Nov 14;1180:121-32. doi: 10.1016/j.brainres.2007.08.050. Epub 2007 Aug 29. Brain Res. 2007. PMID: 17920047 Free PMC article.
-
Glutamate-Transporter Unbinding in Probabilistic Synaptic Environment Facilitates Activation of Distant NMDA Receptors.Cells. 2023 Jun 12;12(12):1610. doi: 10.3390/cells12121610. Cells. 2023. PMID: 37371080 Free PMC article.
References
-
- Allbritton N L, Meyer T, Stryer L. Science. 1992;258:1812–1815. - PubMed
-
- Agnati L F, Zoli M, Stromberg I, Fuxe K. Neuroscience. 1995;69:711–726. - PubMed
-
- Agnati L F, Fuxe K, Nicholson C, Syková E. Volume Transmission Revisited. Amsterdam: Elsevier; 2000.
-
- Morrison P F, Laske D W, Bobo H, Oldfield E H, Dedrick R L. Am J Physiol. 1994;266:R292–R305. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources