Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;41(8):2343-51.

Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina

Affiliations
  • PMID: 10892882

Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina

M G Yefimova et al. Invest Ophthalmol Vis Sci. 2000 Jul.

Abstract

Purpose: The retina and other tissues need iron to survive. However, the normal iron metabolism in rodent retinas had not been characterized. This study was intended to investigate iron and iron homeostasis protein (ferritin, transferrin [Tf] and transferrin receptor [Tf-R]) distribution in 20- to 55-day-old rat retinas.

Methods: Iron was revealed on retinal sections directly by proton-induced x-ray emission (PIXE) and indirectly by electron microscopy (EM). Ferritin, Tf, and Tf-R proteins were localized by immunohistochemistry. Transferrin expression was localized by in situ hybridization (ISH). Transferrin and ferritin proteins and mRNA were analyzed by Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR), respectively.

Results: Iron is widely and unevenly distributed throughout the adult rat retina. The highest concentration was observed by PIXE in the choroid and the retinal pigmented epithelial cell (RPE) layer, and in inner segments of photoreceptors (IS). Outer segments of photoreceptors (OS) also contain iron. EM studies suggested the presence of iron inclusions inside the photoreceptor discs. Choroid, RPE, and IS showed a strong immunoreactivity for ferritin. Transferrin accumulated mainly in the IS and OS areas and in RPE cells but can also be detected slightly in retinal capillaries. Western blot analysis for Tf and ferritin confirmed their presence in the adult neural retina. By RT-PCR, H- and L-chains of ferritin and Tf mRNAs were expressed in neural retina, but the main sites of Tf synthesis observed by ISH were the RPE and choroid cell layers. Tf-R immunoreactivity was detected in the ganglion cell layer, inner nuclear layer, outer plexiform layer, IS, RPE, and choroid. These results were similar for all stages studied.

Conclusions: For the first time, the present study characterized both iron and iron homeostasis proteins in rodent retinas. In the outer retina, iron and ferritin shared the same distribution patterns. In contrast, Tf, mainly synthesized by RPE cells and detected in OS and IS areas, probably helps to transport iron to photoreceptors through their Tf-R. This is a likely pathway for filling iron needs in the outer retina.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources