Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct 6;275(40):31255-65.
doi: 10.1074/jbc.M003770200.

Protease-activated receptor-1 down-regulation: a mutant HeLa cell line suggests novel requirements for PAR1 phosphorylation and recruitment to clathrin-coated pits

Affiliations
Free article

Protease-activated receptor-1 down-regulation: a mutant HeLa cell line suggests novel requirements for PAR1 phosphorylation and recruitment to clathrin-coated pits

J Trejo et al. J Biol Chem. .
Free article

Abstract

Protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is irreversibly activated by a proteolytic mechanism, then internalized and degraded in lysosomes. The latter is critical for temporal fidelity of thrombin signaling. Toward understanding PAR1 down-regulation, we first investigated the pathway of PAR1 internalization. Activated PAR1 was rapidly recruited to clathrin-coated pits, where it colocalized with transferrin receptor (TfnR). Dominant-negative dynamin and clathrin hub mutants both blocked PAR1 internalization. Blockade of PAR1 internalization with dynamin K44A also inhibited activation-dependent PAR1 degradation. Thus activated PAR1 internalizes via clathrin-coated pits together with receptors that recycle and is then sorted away from such receptors and delivered to lysosomes. In the course of these studies we identified a mutant HeLa cell line, designated JT1, that was defective in PAR1 internalization. PAR1 signaled robustly in JT1 cells but was not phosphorylated or recruited to clathrin-coated pits after activation. Internalization of TfnR was intact in JT1 cells and internalization of beta(2)-adrenergic receptor, a GPCR that internalizes and recycles, was present but perhaps reduced. Taken together, these studies suggest that PAR1 is internalized in a dynamin- and clathrin-dependent manner like TfnR and beta(2)-adrenergic receptor but requires a distinct gene product for recruitment into this pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources