Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle
- PMID: 10893341
- DOI: 10.1152/ajpendo.2000.279.1.E206
Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle
Abstract
Physiological stress associated with muscle damage results in systemic insulin resistance. However, the mechanisms responsible for the insulin resistance are not known; therefore, the present study was conducted to elucidate the molecular mechanisms associated with insulin resistance after muscle damage. Muscle biopsies were obtained before (base) and at 1 h during a hyperinsulinemic-euglycemic clamp (40 mU x kg(-1) x min(-1)) in eight young (age 24+/-1 yr) healthy sedentary (maximal O(2) consumption, 49.7+/-2.4 ml x kg(-1) x min(-1)) males before and 24 h after eccentric exercise (ECC)-induced muscle damage. To determine the role of cytokines in ECC-induced insulin resistance, venous blood samples were obtained before (control) and 24 h after ECC to evaluate ex vivo endotoxin-induced mononuclear cell secretion of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-1beta. Glucose disposal was 19% lower after ECC (P<0.05). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation was 45% lower after ECC (P<0.05). Insulin-stimulated phosphatidylinositol (PI) 3-kinase, Akt (protein kinase B) serine phosphorylation, and Akt activity were reduced 34, 65, and 20%, respectively, after ECC (P < 0.05). TNF-alpha, but not IL-6 or IL-1beta production, increased 2.4-fold 24 h after ECC (P<0.05). TNF-alpha production was positively correlated with reduced insulin action on PI 3-kinase (r = 0.77, P = 0.04). In summary, the physiological stress associated with muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase, presumably leading to decreased insulin-mediated glucose uptake. Although more research is needed on the potential role for TNF-alpha inhibition of insulin action, elevated TNF-alpha production after muscle damage may impair insulin signal transduction.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
