Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 6;406(6791):43-6.
doi: 10.1038/35017505.

Quantum superposition of distinct macroscopic states

Affiliations

Quantum superposition of distinct macroscopic states

JR Friedman et al. Nature. .

Abstract

In 1935, Schrodinger attempted to demonstrate the limitations of quantum mechanics using a thought experiment in which a cat is put in a quantum superposition of alive and dead states. The idea remained an academic curiosity until the 1980s when it was proposed that, under suitable conditions, a macroscopic object with many microscopic degrees of freedom could behave quantum mechanically, provided that it was sufficiently decoupled from its environment. Although much progress has been made in demonstrating the macroscopic quantum behaviour of various systems such as superconductors, nanoscale magnets, laser-cooled trapped ions, photons in a microwave cavity and C60 molecules, there has been no experimental demonstration of a quantum superposition of truly macroscopically distinct states. Here we present experimental evidence that a superconducting quantum interference device (SQUID) can be put into a superposition of two magnetic-flux states: one corresponding to a few microamperes of current flowing clockwise, the other corresponding to the same amount of current flowing anticlockwise.

PubMed Disclaimer

LinkOut - more resources