Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;279(1):F46-53.
doi: 10.1152/ajprenal.2000.279.1.F46.

Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney

Affiliations
Free article

Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney

C A Ecelbarger et al. Am J Physiol Renal Physiol. 2000 Jul.
Free article

Abstract

Sodium transport is increased by vasopressin in the cortical collecting ducts of rats and rabbits. Here we investigate, by quantitative immunoblotting, the effects of vasopressin on abundances of the epithelial sodium channel (ENaC) subunits (alpha, beta, and gamma) in rat kidney. Seven-day infusion of 1-deamino-[8-D-arginine]-vasopressin (dDAVP) to Brattleboro rats markedly increased whole kidney abundances of beta- and gamma-ENaC (to 238% and 288% of vehicle, respectively), whereas alpha-ENaC was more modestly, yet significantly, increased (to 142% of vehicle). Similarly, 7-day water restriction in Sprague-Dawley rats resulted in significantly increased abundances of beta- and gamma- but no significant change in alpha-ENaC. Acute administration of dDAVP (2 nmol) to Brattleboro rats resulted in modest, but significant, increases in abundance for all ENaC subunits, within 1 h. In conclusion, all three subunits of ENaC are upregulated by vasopressin with temporal and regional differences. These changes are too slow to play a major role in the short-term action of vasopressin to stimulate sodium reabsorption in the collecting duct. Long-term increases in ENaC abundance should add to the short-term regulatory mechanisms (undefined in this study) to enhance sodium transport in the renal collecting duct.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources