Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jul;79(7):994-1004.
doi: 10.1093/ps/79.7.994.

Chondrocytes and longitudinal bone growth: the development of tibial dyschondroplasia

Affiliations
Free article
Review

Chondrocytes and longitudinal bone growth: the development of tibial dyschondroplasia

C Farquharson et al. Poult Sci. 2000 Jul.
Free article

Abstract

Growth plate cartilage is central to the process of bone elongation. Chondrocytes originating within the resting zone of the growth plate proceed through a series of intermediate phenotypes: proliferating, prehypertrophic and hypertrophic, before reaching a terminally differentiated state. Disruption of this chondrocyte maturational sequence causes many skeletal abnormalities in poultry such as tibial dyschondroplasia (TD), which is a common cause of deformity and lameness in the broiler chicken. Cell and matrix components of the growth plate have been studied in order to determine the cause(s) of the premature arrest of chondrocyte differentiation and retention of prehypertrophic chondrocytes observed in TD. Chondrocyte proliferation proceeds normally in TD, but markers of the differentiated phenotype, local growth factors, and the vitamin D receptor are abnormally expressed within the prehypertrophic chondrocytes above, and within, the lesion. Tibial dyschondroplasia is also associated with a reduced incidence of apoptosis, suggesting that the lesion contains an accumulation of immature cells that have outlived their normal life span. Immunolocalization studies of matrix components suggest an abnormal distribution within the TD growth plate that is consistent with a failure of the chondrocytes to fully hypertrophy. In addition, the collagen matrix of the TD lesion is highly crosslinked, which may make the formed lesion more impervious to vascular invasion and osteoclastic resorption. Recent studies have applied the techniques of differential display and semiquantitative reverse transcriptase-polymerase chain reaction to RNA obtained from discrete populations of growth plate chondrocytes of different maturational phenotypes. This strategy has allowed us to compare phenotypically identical cell fractions from normal and TD growth plates in an attempt to identify possible candidate genes for TD.

PubMed Disclaimer

Publication types

LinkOut - more resources