Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes
- PMID: 10902541
- PMCID: PMC1690321
- DOI: 10.1098/rspb.1999.0886
Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes
Abstract
Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.
Similar articles
-
The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras.Genetica. 1999;106(1-2):3-13. doi: 10.1023/a:1003701925110. Genetica. 1999. PMID: 10710706 Review.
-
Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion.Ann Bot. 2005 Jan;95(1):147-75. doi: 10.1093/aob/mci010. Ann Bot. 2005. PMID: 15596464 Free PMC article. Review.
-
Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Insight into the diversity and evolution of the cryptomonad nucleomorph genome.Mol Biol Evol. 2006 May;23(5):856-65. doi: 10.1093/molbev/msj066. Epub 2005 Nov 23. Mol Biol Evol. 2006. PMID: 16306383
-
Nucleomorphs: enslaved algal nuclei.Curr Opin Microbiol. 2002 Dec;5(6):612-9. doi: 10.1016/s1369-5274(02)00373-9. Curr Opin Microbiol. 2002. PMID: 12457707 Review.
-
Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set.Genome Biol Evol. 2011;3:44-54. doi: 10.1093/gbe/evq082. Epub 2010 Dec 8. Genome Biol Evol. 2011. PMID: 21147880 Free PMC article.
Cited by
-
Energetics and genetics across the prokaryote-eukaryote divide.Biol Direct. 2011 Jun 30;6:35. doi: 10.1186/1745-6150-6-35. Biol Direct. 2011. PMID: 21714941 Free PMC article.
-
Peculiar behavior of distinct chromosomal DNA elements during and after development in the dicyemid mesozoan Dicyema japonicum.Chromosome Res. 2006;14(8):817-30. doi: 10.1007/s10577-006-1084-z. Epub 2007 Jan 19. Chromosome Res. 2006. PMID: 17139531
-
Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution.Biol Direct. 2010 Feb 4;5:7. doi: 10.1186/1745-6150-5-7. Biol Direct. 2010. PMID: 20132544 Free PMC article.
-
Nucleomorph genomes: much ado about practically nothing.Genome Biol. 2001;2(8):REVIEWS1022. doi: 10.1186/gb-2001-2-8-reviews1022. Epub 2001 Jul 30. Genome Biol. 2001. PMID: 11532218 Free PMC article. Review.
-
Genome size and chromatin condensation in vertebrates.Chromosoma. 2005 Feb;113(7):362-9. doi: 10.1007/s00412-004-0323-3. Epub 2005 Jan 13. Chromosoma. 2005. PMID: 15647899
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources