Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;106(2):271-9.
doi: 10.1172/JCI9397.

Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency

Affiliations

Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency

I S Farooqi et al. J Clin Invest. 2000 Jul.

Abstract

Over 20 severely obese subjects in 11 independent kindreds have been reported to have pathogenic heterozygous mutations in the gene encoding the melanocortin 4 receptor (MC4R), making this the most common known monogenic cause of human obesity. To date, the detailed clinical phenotype of this dominantly inherited disorder has not been defined, and no homozygous subjects have been described. We determined the nucleotide sequence of the entire coding region of the MC4R gene in 243 subjects with severe, early-onset obesity. A novel two-base pair GT insertion in codon 279 was found in two unrelated subjects, and four novel missense mutations, N62S, R165Q, V253I, C271Y, and one mutation (T112M) reported previously were found in five subjects. N62S was found in homozygous form in five children with severe obesity from a consanguineous pedigree. All four heterozygous carriers were nonobese. Several features of the phenotype, e.g. hyperphagia, tendency toward tall stature, hyperinsulinemia, and preserved reproductive function, closely resemble those reported previously in Mc4r knock-out mice. In addition, a marked increase in bone mineral density was seen in all affected subjects. In transient transfection assays, the N62S mutant receptor showed a responsiveness to alphaMSH that was intermediate between the wild-type receptor and mutant receptors carrying nonsense and missense mutations associated with dominantly inherited obesity. Thus MC4R mutations result in a syndrome of hyperphagic obesity in humans that can present with either dominant or recessive patterns of inheritance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Sequence variants detected in MC4R. The positions of the sequence variants described in Table 1 are indicated on a model of the MC4R protein structure. Amino acids are indicated as circles in single-letter code. Amino acids affected by mutations are shaded, and specific mutations are then indicated in a shaded oval. Shaded ovals outlined in black indicate mutations where phenotypic studies on patients have been performed. Codon number 1 refers to the initiator methionine.
Figure 2
Figure 2
Inheritance of mutations in MC4R. Cosegregation of mutational status with BMI is shown for the five families in the mutational screening study for whom family data were available. Also shown is the family tree for the family with the CTCT deletion reported previously by us (9). Filled symbols represent subjects with severe obesity. The first line of the symbols corresponds to the identification number. The second line shows the genotype: N, normal allele; M, mutant allele. The third and fourth lines show current age of subject (years) and BMI standard deviation score, respectively.
Figure 3
Figure 3
Signaling properties of mutant MC4Rs, N62S, GTins, CTCTΔ, and C271Y. HEK293 cells were transiently transfected with either empty pcDNA3 vector or the same vector expressing wild-type, CTCTΔ, GTins, N62S, and C271Y-mutant MC4Rs. The response to increasing concentrations of ligand (αMSH) was assessed by cotransfection with a cAMP-responsive reporter plasmid as described previously (18) and by measuring luciferase activity in a luminometer (see Methods). Data obtained were normalized for transfection efficiency by cotransfection of an internal control plasmid, pRL-CMV, which constitutively expresses Renilla luciferase. Data is expressed as a fold induction of luciferase activity. Each point represents the mean (± SE) of at least three independent experiments performed in quadruplicate.

Comment in

References

    1. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med. 1999;5:1066–1070. - PubMed
    1. Krude H, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–157. - PubMed
    1. Ollmann MM, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science. 1997;278:135–138. - PubMed
    1. Naggert JK, et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet. 1995;10:135–142. - PubMed
    1. Jackson RS, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16:303–306. - PubMed

Publication types

MeSH terms

Substances