Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 21;87(2):118-25.
doi: 10.1161/01.res.87.2.118.

Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation

Affiliations
Free article

Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation

P M Kang et al. Circ Res. .
Free article

Abstract

Apoptosis has been implicated in ischemic heart disease, but its mechanism in cardiomyocytes has not been elucidated. In this study, we investigate the effects of hypoxia and reoxygenation in adult cardiomyocytes and the molecular mechanism involved in cardiomyocyte apoptosis. Morphologically, reoxygenation induced rounding up of the cells, appearance of membrane blebs that were filled with marginated mitochondria, and ultrastructural findings characteristic of apoptosis. Reoxygenation (18 hours of reoxygenation after 6 hours of hypoxia) and prolonged hypoxia (24 hours of hypoxia) resulted in a 59% and 51% decrease in cellular viability, respectively. During reoxygenation, cell death occurred predominantly via apoptosis associated with appearance of cytosolic cytochrome c and activation of caspase-3 and -9. However, nonapoptotic cell death predominated during prolonged hypoxia. Both caspase inhibition and Bcl-2 overexpression during reoxygenation significantly improved cellular viability through inhibition of apoptosis but had minimal effect on hypoxia-induced cell death. Bcl-2 overexpression blocked reoxygenation-induced cytochrome c release and activation of caspase -3 and -9, but caspase inhibition alone did not block cytochrome c release. These results suggest that apoptosis predominates in cardiomyocytes after reoxygenation through a mitochondrion-dependent apoptotic pathway, and Bcl-2 prevents reoxygenation-induced apoptosis by inhibiting cytochrome c release from the mitochondria and prevents activation of caspase-3 and -9.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources