Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;21(16):1659-68.
doi: 10.1016/s0142-9612(00)00040-5.

Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles

Affiliations

Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles

M Dunne et al. Biomaterials. 2000 Aug.

Abstract

Polymer degradation usually plays a crucial role in drug release from sustained release polyester systems, therefore in order to elucidate the mechanism governing release, it appears essential to analyse the in vitro degradation behaviour of these devices. In this study the influence of processing conditions, particle characteristics and release media temperature on the degradation of PLGA spherical particles were examined. It was found that a linear relationship between the degradation rate and particle size existed, with the larger particles degrading fastest. In smaller particles degradation products formed within the particle can diffuse easily to the surface while in larger particles degradation products have a longer path to the surface of the particle during which autocatalytic degradation of the remaining polymer material can occur. The influence of release media temperature on the degradation of PLGA particles was also examined. At lower incubation temperatures PLGA microparticles showed an induction period after which polymer degradation proceeded. The rate of polymer degradation was found to increase with increasing incubation temperature. The polymer erosion profile was fitted to the Prout-Tompkins equation and the rate constants were used to determine the activation energy of PLGA hydrolysis.

PubMed Disclaimer

LinkOut - more resources