Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;11(8):1419-1425.
doi: 10.1681/ASN.V1181419.

Growth hormone increases inducible nitric oxide synthase expression in mesangial cells

Affiliations

Growth hormone increases inducible nitric oxide synthase expression in mesangial cells

Sonia Q Doi et al. J Am Soc Nephrol. 2000 Aug.

Abstract

Mice transgenic for bovine growth hormone (GH) develop progressive glomerulosclerosis. However, the proximal signaling events that lead to increased matrix deposition in this pathologic condition are still unclear. Components of the L-arginine metabolic pathway, especially inducible nitric oxide (NO) synthase (iNOS), ornithine aminotransferase (OAT), and ornithine decarboxylase (ODC), have been associated with glomerular scarring. In this study, mesangial cells were treated with GH, and the expression of iNOS, ODC, and OAT was determined using reverse transcription-PCR. In addition, nitrite accumulation in the conditioned media of mesangial cell cultures was measured in the presence or absence of GH. The findings revealed that GH increased iNOS transcript levels in a dose-dependent manner, with the highest levels being attained at GH concentrations of 20 to 50 ng/ml. The GH-induced increase in iNOS transcript levels was accompanied by a significant increase in nitrite concentrations in conditioned media, which was blocked by the addition of L-N(G)-monomethylarginine. The effect of GH (50 ng/ml) in eliciting nitrite production was as potent as that of bacterial lipopolysaccharide (10 microg/ml). The expression of OAT and ODC, in contrast, was not altered at any of the GH concentrations tested. GH receptor mRNA was also expressed by mesangial cells, independently of the GH concentration present in the cell culture medium. These data indicate that GH may interact with its receptor to regulate the L-arginine/NO pathway in mesangial cells, by directly modulating iNOS expression and NO production, without altering the arginase/OAT/ODC pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources