Noise characterization of block-iterative reconstruction algorithms: I. Theory
- PMID: 10909922
- DOI: 10.1109/42.848178
Noise characterization of block-iterative reconstruction algorithms: I. Theory
Abstract
Researchers have shown increasing interest in block-iterative image reconstruction algorithms due to the computational and modeling advantages they provide. Although their convergence properties have been well documented, little is known about how they behave in the presence of noise. In this work, we fully characterize the ensemble statistical properties of the rescaled block-iterative expectation-maximization (RBI-EM) reconstruction algorithm and the rescaled block-iterative simultaneous multiplicative algebraic reconstruction technique (RBI-SMART). Also included in the analysis are the special cases of RBI-EM, maximum-likelihood EM (ML-EM) and ordered-subset EM (OS-EM), and the special case of RBI-SMART, SMART. A theoretical formulation strategy similar to that previously outlined for ML-EM is followed for the RBI methods. The theoretical formulations in this paper rely on one approximation, namely, that the noise in the reconstructed image is small compared to the mean image. In a second paper, the approximation will be justified through Monte Carlo simulations covering a range of noise levels, iteration points, and subset orderings. The ensemble statistical parameters could then be used to evaluate objective measures of image quality.
Comment in
-
Recent developments in iterative image reconstruction for PET and SPECT.IEEE Trans Med Imaging. 2000 Apr;19(4):257-60. doi: 10.1109/TMI.2000.848177. IEEE Trans Med Imaging. 2000. PMID: 10909921 No abstract available.
Similar articles
-
Noise characterization of block-iterative reconstruction algorithms: II. Monte Carlo simulations.IEEE Trans Med Imaging. 2005 Jan;24(1):112-21. doi: 10.1109/tmi.2004.836876. IEEE Trans Med Imaging. 2005. PMID: 15638190
-
Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT.Phys Med Biol. 1998 Apr;43(4):875-86. doi: 10.1088/0031-9155/43/4/015. Phys Med Biol. 1998. PMID: 9572511
-
Noise analysis of MAP-EM algorithms for emission tomography.Phys Med Biol. 1997 Nov;42(11):2215-32. doi: 10.1088/0031-9155/42/11/015. Phys Med Biol. 1997. PMID: 9394408
-
Fisher's method of scoring in statistical image reconstruction: comparison of Jacobi and Gauss-Seidel iterative schemes.Stat Methods Med Res. 1994;3(1):41-61. doi: 10.1177/096228029400300104. Stat Methods Med Res. 1994. PMID: 8044352 Review.
-
4D image reconstruction for emission tomography.Phys Med Biol. 2014 Nov 21;59(22):R371-418. doi: 10.1088/0031-9155/59/22/R371. Epub 2014 Oct 31. Phys Med Biol. 2014. PMID: 25361380 Review.
Cited by
-
Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation.Phys Med Biol. 2010 Mar 7;55(5):1453-73. doi: 10.1088/0031-9155/55/5/013. Epub 2010 Feb 11. Phys Med Biol. 2010. PMID: 20150683 Free PMC article.
-
Properties of noise in positron emission tomography images reconstructed with filtered-backprojection and row-action maximum likelihood algorithm.J Digit Imaging. 2013 Jun;26(3):447-56. doi: 10.1007/s10278-012-9511-5. J Digit Imaging. 2013. PMID: 22850933 Free PMC article.
-
Analysis of penalized likelihood image reconstruction for dynamic PET quantification.IEEE Trans Med Imaging. 2009 Apr;28(4):608-20. doi: 10.1109/TMI.2008.2008971. Epub 2009 Feb 10. IEEE Trans Med Imaging. 2009. PMID: 19211345 Free PMC article.
-
A novel approach to assess the treatment response using Gaussian random field in PET.Med Phys. 2016 Feb;43(2):833-42. doi: 10.1118/1.4939879. Med Phys. 2016. PMID: 26843244 Free PMC article.
-
Quantitative statistical methods for image quality assessment.Theranostics. 2013 Oct 4;3(10):741-56. doi: 10.7150/thno.6815. Theranostics. 2013. PMID: 24312148 Free PMC article. Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources