Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug:113 ( Pt 16):2897-907.
doi: 10.1242/jcs.113.16.2897.

Somatic linker histone H1 is present throughout mouse embryogenesis and is not replaced by variant H1 degrees

Affiliations

Somatic linker histone H1 is present throughout mouse embryogenesis and is not replaced by variant H1 degrees

P G Adenot et al. J Cell Sci. 2000 Aug.

Abstract

A striking feature of early embryogenesis in a number of organisms is the use of embryonic linker histones or high mobility group proteins in place of somatic histone H1. The transition in chromatin composition towards somatic H1 appears to be correlated with a major increase in transcription at the activation of the zygotic genome. Previous studies have supported the idea that the mouse embryo essentially follows this pattern, with the significant difference that the substitute linker histone might be the differentiation variant H1 degrees, rather than an embryonic variant. We show that histone H1 degrees is not a major linker histone during early mouse development. Instead, somatic H1 was present throughout this period. Though present in mature oocytes, somatic H1 was not found on maternal metaphase II chromatin. Upon formation of pronuclear envelopes, somatic H1 was rapidly incorporated onto maternal and paternal chromatin, and the amount of somatic H1 steadily increased on embryonic chromatin through to the 8-cell stage. Microinjection of somatic H1 into oocytes, and nuclear transfer experiments, demonstrated that factors in the oocyte cytoplasm and the nuclear envelope, played central roles in regulating the loading of H1 onto chromatin. Exchange of H1 from transferred nuclei onto maternal chromatin required breakdown of the nuclear envelope and the extent of exchange was inversely correlated with the developmental advancement of the donor nucleus.

PubMed Disclaimer

MeSH terms

LinkOut - more resources