Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 2;274(2):394-9.
doi: 10.1006/bbrc.2000.3145.

Na(+) channel regulation by calmodulin kinase II in rat cerebellar granule cells

Affiliations

Na(+) channel regulation by calmodulin kinase II in rat cerebellar granule cells

E Carlier et al. Biochem Biophys Res Commun. .

Abstract

The effects of specific CaM kinase II inhibitors were investigated on Na(+) channels from rat cerebellar granule cells. A maximal effect of KN-62 was observed at 20 microM and consisted of an 80% reduction of the peak Na(+) current after only a 10-min application. A hyperpolarizing shift of 8 mV in the steady-state inactivation was also observed. KN-04 (20 microM), an inactive analog, had no detectable effect. KN-62 was however inactive on Na(+) currents recorded from Chinese hamster ovary cells expressing the type II A alpha subunit. We have also analyzed the inhibitory effects of CaM kinase II 296-311 and CaM kinase II 281-309 peptides. Both peptides (75 microM) induced a maximum peak Na(+) current reduction within 30 min. Under similar conditions, a truncated peptide CaM kinase II 284-302 was ineffective. These results demonstrate that CaM kinase II acts as a modulator of Na(+) channel activity in cerebellar granule cells.

PubMed Disclaimer

MeSH terms

LinkOut - more resources