Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;279(2):G400-10.
doi: 10.1152/ajpgi.2000.279.2.G400.

NH(4)Cl inhibition of acid secretion: possible involvement of an apical K(+) channel in bullfrog oxyntic cells

Affiliations
Free article

NH(4)Cl inhibition of acid secretion: possible involvement of an apical K(+) channel in bullfrog oxyntic cells

S J Hagen et al. Am J Physiol Gastrointest Liver Physiol. 2000 Aug.
Free article

Abstract

This study was undertaken to determine the mechanism by which ammonium chloride (NH(4)Cl) inhibits stimulated acid secretion in the bullfrog gastric mucosa. To this end, four possible pathways of inhibition were studied: 1) blockade of basolateral K(+) channel, 2) blockade of ion transport activity, 3) neutralization of secreted H(+) in the luminal solution, or 4) ATP depletion. Addition of nutrient 10 mM NH(4)Cl (calculated NH(3) concentration = 92.5 microM and NH(4)(+) concentration = 9.91 mM) inhibited acid secretion within 30 min. Inhibition of acid secretion did not occur by blockade of basolateral K(+) channel activity or ion transport activity or by neutralization of the luminal solution. Although ATP depletion occurred in the presence of NH(4)Cl, the magnitude of ATP depletion in 30 min was not sufficient to inhibit stimulated acid secretion. By comparing the effect of NH(4)Cl on the resistance of inhibited or stimulated tissues, we demonstrate that NH(4)Cl acts specifically on stimulated tissues. We propose that NH(4)Cl blocks activity of an apical K(+) channel present in stimulated oxyntic cells. Our data suggest that the activity of this channel is important for the regulation of acid secretion in bullfrog oxyntic cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources