Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;279(2):F270-4.
doi: 10.1152/ajprenal.2000.279.2.F270.

Shear stress-mediated NO production in inner medullary collecting duct cells

Affiliations
Free article

Shear stress-mediated NO production in inner medullary collecting duct cells

Z Cai et al. Am J Physiol Renal Physiol. 2000 Aug.
Free article

Abstract

Recent evidence suggests that nitric oxide (NO) within the inner medullary collecting duct (IMCD) functions to regulate sodium and water reabsorption. Because fluid shear stress has been shown to increase NO production in endothelial and vascular smooth muscle cells, experiments were designed to determine whether a similar mechanism exists in IMCD cells. Cultured IMCD-3 cells derived from murine IMCD were subjected to 60 min of pulsatile shear stress. Nitrite production (2,3-diaminonaphthalene fluorometric assay) increased 12-, 16-, and 23-fold at 3.3, 10, and 30 dyn/cm(2), respectively, compared with static control cultures. Preincubation with the non-isoform-specific NO synthase inhibitor nitro-L-arginine methyl ester reduced nitrite production by 83% in response to 30 dyn/cm(2). Western blotting and immunofluorescence analysis of static IMCD-3 cell cultures revealed the expression of all three NO synthase isoforms (NOS-1 or neuronal NOS, NOS-2 or inducible NOS, and NOS-3 or endothelial NOS) in IMCD-3 cultures. These results indicate that NO production is modulated by shear stress in IMCD-3 cells and that fluid shear stress within the renal tubular system may play a role in the regulation of sodium and water excretion by control of NO production in the IMCD.

PubMed Disclaimer

Publication types

LinkOut - more resources