Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;279(2):L342-9.
doi: 10.1152/ajplung.2000.279.2.L342.

Determinants of surfactant function in acute lung injury and early recovery

Affiliations
Free article

Determinants of surfactant function in acute lung injury and early recovery

R Mora et al. Am J Physiol Lung Cell Mol Physiol. 2000 Aug.
Free article

Abstract

Relationships between lung function and surfactant function and composition were examined during the evolution of acute lung injury in guinea pigs. Lung mechanics and gas exchange were assessed 12, 24, or 48 h after exposure to nebulized lipopolysaccharide (LPS). Bronchoalveolar lavage (BAL) fluid was processed for phospholipid and protein contents and surfactant protein (SP) A and SP-B levels; surfactant function was measured by pulsating bubble surfactometry. Lung elastance, tissue resistance, and arterial-alveolar gradient were moderately elevated by 12 h after LPS exposure and continued to increase over the first 24 h but began to recover between 24 and 48 h. Similarly, the absolute amount of 30,000 g pelleted SP-A and SP-B, the phospholipid content of BAL fluid, and surfactant function declined over the first 24 h after exposure, with recovery between 24 and 48 h. BAL fluid total protein content increased steadily over the first 48 h after LPS nebulization. In this model of acute lung injury, the intra-alveolar repletion of surfactant components in early recovery led to improved surfactant function despite the presence of potentially inhibitory plasma proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources