Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jun 10;250(11):4073-80.

The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I

  • PMID: 1092683
Free article

The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I

W R McClure et al. J Biol Chem. .
Free article

Abstract

A steady state kinetic study of Escherichia coli DNA polymerase I has been carried out using poly[d(A-T)] as the template-primer substrate. The results of substrate saturation and product inhibition kinetic studies suggest an altered Ordered Bi Bi mechanism for the enzyme. The Michaelis constants for polymer, d-atp, and dTTP are 5 nM (3'-OH ends), 1 muM, and 2 muM, respectively. The apparent equilibrium constant for the reaction, Keq equals [PPi]/[dNTP], was estimated as greater than or equal to 500. No quaternary complex of enzyme, template, and both deoxynucleoside triphosphates was detected. Single turnover experiments at 4 degrees indicated that the enzyme functions non-processively under the specified conditions, that is, dissociates after each catalytic step. The results at higher temperature were consistent with dissociation within 30 steps. Furthermore, at 4 degrees a burst of incorporation stoichiometric with the amount of enzyme was observed upon initiation of the reaction, indicating that the rate-limiting step in the steady state occurs after phosphodiester bond formation. There is a linear Arrhenius dependence of the initial reaction on temperature in the range 4-40 degrees, with an apparent Ea equals 17 kcal/mol. The rate equations appropriate for template-dependent polymerases which dissociate after each catalytic step have been derived.

PubMed Disclaimer

LinkOut - more resources