Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Sep 15;60(6):735-40.
doi: 10.1016/s0006-2952(00)00267-7.

K(ATP) channels: linker between phospholipid metabolism and excitability

Affiliations
Review

K(ATP) channels: linker between phospholipid metabolism and excitability

T Baukrowitz et al. Biochem Pharmacol. .

Abstract

ATP-sensitive potassium (K(ATP)) channels couple electrical activity to cellular metabolism via their inhibition by intracellular ATP. When examined in excised patches, ATP concentrations required for half-maximal inhibition (IC(50)) varied among tissues and were reported to be as low as 10 microM. This set up a puzzling question on how activation of K(ATP) channels can occur under physiological conditions, where the cytoplasmic concentration of ATP is much higher than that required for channel inhibition. A new twist was added to this puzzle when two recent reports showed that phospholipids such as phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidyl-4-phosphate (PIP) are able to shift ATP-sensitivity of K(ATP) channels from the micro- into the millimolar range and thus provide a mechanism for physiological activation of the channels. This commentary describes how phospholipids control ATP inhibition of K(ATP) channels and how this mechanism is regulated effectively by receptor-mediated stimulation of phospholipase C.

PubMed Disclaimer

MeSH terms

LinkOut - more resources