Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;203(Pt 17):2565-79.
doi: 10.1242/jeb.203.17.2565.

Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture

Affiliations

Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture

S A Budick et al. J Exp Biol. 2000 Sep.

Abstract

Larval zebrafish (Brachydanio rerio) are a popular model system because of their genetic attributes, transparency and relative simplicity. They have approximately 200 neurons that project from the brainstem into the spinal cord. Many of these neurons can be individually identified and laser-ablated in intact larvae. This should facilitate cellular-level characterization of the descending control of larval behavior patterns. Towards this end, we attempt to describe the range of locomotor behavior patterns exhibited by zebrafish larvae. Using high-speed digital imaging, a variety of swimming and turning behaviors were analyzed in 6- to 9-day-old larval fish. Swimming episodes appeared to fall into two categories, with the point of maximal bending of the larva's body occurring either near the mid-body (burst swims) or closer to the tail (slow swims). Burst swims also involved larger-amplitude bending, faster speeds and greater yaw than slow swims. Turning behaviors clearly fell into two distinct categories: fast, large-angle escape turns characteristic of escape responses, and much slower routine turns lacking the large counterbend that often accompanies escape turns. Prey-capture behaviors were also recorded. They were made up of simpler locomotor components that appeared to be similar to routine turns and slow swims. The different behaviors observed were analyzed with regard to possible underlying neural control systems. Our analysis suggests the existence of discrete sets of controlling neurons and helps to explain the need for the roughly 200 spinal-projecting nerve cells in the brainstem of the larval zebrafish.

PubMed Disclaimer

Publication types

LinkOut - more resources