Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;14(8):1137-46.
doi: 10.1210/mend.14.8.0501.

Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imaging

Affiliations

Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imaging

R Yu et al. Mol Endocrinol. 2000 Aug.

Abstract

The pituitary transforming gene, PTTG, is abundantly expressed in endocrine neoplasms. PTTG has recently been recognized as a mammalian securin based on its biochemical homology to Pds1p. PTTG expression and intracellular localization were therefore studied during the cell cycle in human placental JEG-3 cells. PTTG mRNA and protein expressions were low at the G1/S border, gradually increased during S phase, and peaked at G2/M, but PTTG levels were attenuated as cells entered G1. In interphase cells, wild-type PTTG, an epitope-tagged PTTG, and a PTTG-EGFP conjugate all localized to both the nucleus and cytoplasm, but in mitotic cells, PTTG was not observed in the chromosome region. PTTG-EGFP colocalized with mitotic spindles in early mitosis and was degraded in anaphase. Intracellular fates of PTTG-EGFP and a conjugate of EGFP and a mutant inactivated PTTG devoid of an SH3-binding domain were observed by real-time visualization of the EGFP conjugates in live cells. The same cells were continuously observed as they progressed from G1/S border to S, G2/M, and G1. Most cells (67%) expressing PTTG-EGFP died by apoptosis, and few cells (4%) expressing PTTG-EGFP divided, whereas those expressing mutant PTTG-EGFP divided. PTTG-EGFP, as well as the mutant PTTG-EGFP, disappeared after cells divided. The results show that PTTG expression and localization are cell cycle-dependent and demonstrate that PTTG regulates endocrine tumor cell division and survival.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources