Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;2(3):321-30.

Modeling of Enterococcus faecalis D-alanine:D-alanine ligase: structure-based study of the active site in the wild-type enzyme and in glycopeptide-dependent mutants

Affiliations
  • PMID: 10937441

Modeling of Enterococcus faecalis D-alanine:D-alanine ligase: structure-based study of the active site in the wild-type enzyme and in glycopeptide-dependent mutants

M Prévost et al. J Mol Microbiol Biotechnol. 2000 Jul.

Abstract

A model for the 3-D structure of Enterococcus faecalis D-Ala:D-Ala ligase was produced using the X-ray structure of the Escherichia coli enzyme complexed with ADP and the methylphosphinophosphate inhibitor as a template. The model passed critical validation criteria with an accuracy similar to that of the template crystallographic structure and showed that ADP and methylphosphinophosphate were positioned in a large empty pocket at the interface between the central and the C-terminal domains, as in E. coli. It evidenced the residues important for substrate binding and catalytic activity in the active site and demonstrated a large body of conserved interactions between the active sites of the E. faecalis and the E. coli D-Ala:D-Ala ligase, the major differences residing in the balance between the hydrophobic and aromatic environment of the adenine. The model also successfully explained the inactivity of four spontaneous mutants (D295 --> V, which impairs interactions with Mg2+ and R293, which are both essential for binding and catalytic activity; S319 --> I, which perturbs recognition of D-Ala2; DAK251-253 --> E, in which the backbone conformation in the vicinity of the deletion remains unaltered but phosphate transfer from ATP is perturbed because of lack of K253; T316 --> I, which causes the loss of a hydrogen bond affecting the positioning of S319 and therefore the binding of D-Ala2). Since D-Ala:D-Ala ligase is an essential enzyme for bacteria, this approach, combining molecular modeling and molecular biology, may help in the design of specific ligands which could inhibit the enzyme and serve as novel antibiotics.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources