Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Aug;1(1):107-25.

The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins

Affiliations
  • PMID: 10941792
Review

The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins

T T Tseng et al. J Mol Microbiol Biotechnol. 1999 Aug.

Abstract

A previous report identified and classified a small family of gram-negative bacterial drug and heavy metal efflux permeases, now commonly referred to as the RND family (TC no. 2.6). We here show that this family is actually a ubiquitous superfamily with representation in all major kingdoms. We report phylogenetic analyses that define seven families within the RND superfamily as follows: (1) the heavy metal efflux (HME) family (gram negative bacteria), (2) the hydrophobe/amphiphile efflux-1 (HAE1) family (gram negative bacteria), (3) the nodulation factor exporter (NFE) family (gram negative bacteria), (4) the SecDF protein-secretion accessory protein (SecDF) family (gram negative and gram positive bacteria as well as archaea), (5) the hydrophobe/amphiphile efflux-2 (HAE2) family (gram positive bacteria), (6) the eukaryotic sterol homeostasis (ESH) family, and (7) the hydrophobe/amphiphile efflux-3 (HAE3) family (archaea and spirochetes). Functionally uncharacterized proteins were identified that are members of the RND superfamily but fall outside of these seven families. Some of the eukaryotic homologues function as enzymes and receptors instead of (or in addition to) transporters. The sizes and topological patterns exhibited by members of all seven families are shown to be strikingly similar, and statistical analyses establish common descent. Multiple alignments of proteins within each family allow derivation of family-specific signature sequences. Structural, functional, mechanistic and evolutionary implication of the reported results are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources