Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Nov;1(2):211-9.

Cold shock response and low temperature adaptation in psychrotrophic bacteria

Affiliations
  • PMID: 10943552
Review

Cold shock response and low temperature adaptation in psychrotrophic bacteria

M Hébraud et al. J Mol Microbiol Biotechnol. 1999 Nov.

Abstract

Psychrotrophic bacteria are capable of developing over a wide temperature range and they can grow at temperatures close to or below freezing. This ability requires specific adaptative strategies in order to maintain membrane fluidity, the continuance of their metabolic activities, and protein synthesis at low temperature. A cold-shock response has been described in several psychrotrophic bacteria, which is somewhat different from that in mesophilic microorganisms: (i) the synthesis of housekeeping proteins is not repressed following temperature downshift and they are similarly expressed at optimal and low temperatures (ii) cold-shock proteins or Csps are synthesized, the number of which increases with the severity of the shock (iii) a second group of cold-induced proteins, i.e. the cold acclimation proteins or Caps, comparable with Csps are continuously synthesized during prolonged growth at low temperature. Homologues to CspA, the major cold-shock protein in E. coli, have been described in various psychrotrophs, but unlike their mesophilic counterparts, they belong to the group of Caps. Although they have been poorly studied, Caps are of particular importance since they differentiate psychrotrophs from mesophiles, and they are probably one of the key determinant that allow life at very low temperature.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources