The vitamin D response element-binding protein. A novel dominant-negative regulator of vitamin D-directed transactivation
- PMID: 10948206
- DOI: 10.1074/jbc.M007117200
The vitamin D response element-binding protein. A novel dominant-negative regulator of vitamin D-directed transactivation
Abstract
Vitamin D resistance in certain primate genera is associated with the constitutive overexpression of a non-vitamin D receptor (VDR)-related, vitamin D response element-binding protein (VDRE-BP) and squelching of vitamin d-directed transactivation. We used DNA affinity chromatography to purify proteins associated with non-VDR-VDRE binding activity from vitamin d-resistant New World primate cells. In electrophoretic mobility shift assays, these proteins bound specifically to either single-strand or double-strand oligonucleotides harboring the VDRE. Amino acid sequencing of tryptic peptides from a 34-kDa (VDRE-BP1) and 38-kDa species (VDRE-BP-2) possessed sequence homology with human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and hnRNPA2, respectively. cDNAs bearing the open reading frame for both VDRE-BPs were cloned and used to transfect wild-type, hormone-responsive primate cells. Transient and stable overexpression of the VDRE-BP2 cDNA, but not the VDRE-BP1 cDNA, in wild-type cells with a VDRE-luciferase reporter resulted in significant reduction in reporter activity. These data suggest that the hnRNPA2-related VDRE-BP2 is a dominant-negative regulator of vitamin D action.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources