Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul-Aug;20(4):2513-7.

Inhibition of tat-mediated HIV-1-LTR transactivation and virus replication by sulfhydryl compounds with chelating properties

Affiliations
  • PMID: 10953320

Inhibition of tat-mediated HIV-1-LTR transactivation and virus replication by sulfhydryl compounds with chelating properties

I Demirhan et al. Anticancer Res. 2000 Jul-Aug.

Abstract

D-Penicillamine, a structural analog of cysteine, has the ability to chelate metal ions and reacts with cysteine. We have shown earlier that D-Penicillamin is a potential inhibitor of tat-mediated transactivation of HIV-1-LTR (14) and possesses anti-HIV-1 activity (23). Following this approach, we evaluated the anti-tat and anti-HIV-1 activity of several sulfhydryl compounds with chelating properties. The tested compounds: N-(2-Mercapto-propionyl)-glycin (MPG), 2,3-Dimercapto-propanol (DMP) and 2,3-Dimercapto-propane-sulfonic acid (DMPS) exhibited an inhibitory effect on the tat-mediated transactivation in Jurkat cells, as well as in U937 cells. The highest inhibitory response was shown by DMP leading to about 50% inhibition of transactivation in Jurkat cels and an 80% inhibition in U937 cells. On the contrary, DMPS (30 micrograms/ml) had no inhibitory effect in U937 cells, but did exhibit a 50% inhibition of transactivation in Jurkat cells at 30 micrograms/ml. The antiviral activity of DMP and DMPS was evaluated in H9 cells. In the concentration range which is effective for antiviral effect, both the compounds were highly cytotoxic. Mercapto-propionyl-glycin, although a weak inhibitor of transactivation, was able to inhibit synctia formation to more than 90% and inhibit the viral antigene expression to about 70%. The concentration of MPG needed to achieve this antiviral effect was very high, but it had no cytotoxicity at this concentration. We suggest that a search for compounds using this approach may be useful in developing potential inhibitors of tat-mediated transactivation.

PubMed Disclaimer

Publication types

MeSH terms