Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 22;39(33):10284-93.
doi: 10.1021/bi000436r.

The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins

Affiliations

The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins

L A Shepard et al. Biochemistry. .

Abstract

Perfringolysin O (PFO) is a member of the cholesterol-dependent cytolysin (CDC) family of membrane-penetrating toxins. The CDCs form large homooligomers (estimated to be comprised of up to 50 CDC monomers) that are responsible for generating a large pore in cholesterol-containing membranes of eukaryotic cells. The assembly of the PFO cytolytic complex was examined to determine whether it forms an oligomeric prepore complex on the membrane prior to the insertion of its membrane-spanning beta-sheet. A PFO oligomeric complex was formed on liposomes at both 4 degrees C and 37 degrees C and shown by SDS-agarose gel electrophoresis to be comprised of a large, comparatively homogeneous complex instead of a distribution of oligomer sizes. At low temperature, the processes of oligomerization and membrane insertion could be resolved, and PFO was found to form an oligomer without significant membrane insertion of its beta-hairpins. Furthermore, PFO was found to increase the ion conductivity through a planar bilayer by large and discrete stepwise changes in conductance that are consistent with the insertion of a preassembled pore complex into the bilayer. The combined results of these analyses strongly support the hypothesis that PFO forms a large oligomeric prepore complex on the membrane surface prior to the insertion of its transmembrane beta-sheet.

PubMed Disclaimer

Publication types

LinkOut - more resources