Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;13(8):749-60.
doi: 10.1021/tx990170t.

Oxidative metabolites of 5-S-cysteinylnorepinephrine are irreversible inhibitors of mitochondrial complex I and the alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase complexes: possible implications for neurodegenerative brain disorders

Affiliations

Oxidative metabolites of 5-S-cysteinylnorepinephrine are irreversible inhibitors of mitochondrial complex I and the alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase complexes: possible implications for neurodegenerative brain disorders

W Xin et al. Chem Res Toxicol. 2000 Aug.

Abstract

The major initial product of the oxidation of norepinephrine (NE) in the presence of L-cysteine is 5-S-cysteinylnorepinephrine which is then further easily oxidized to the dihydrobenzothiazine (DHBT) 7-(1-hydroxy-2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1, 4-benzothiazine-3-carboxylic acid (DHBT-NE-1). When incubated with intact rat brain mitochondria, DHBT-NE-1 evokes rapid inhibition of complex I respiration without affecting complex II respiration. DHBT-NE-1 also evokes time- and concentration-dependent irreversible inhibition of NADH-coenzyme Q(1) (CoQ(1)) reductase, the pyruvate dehydrogenase complex (PDHC), and alpha-ketoglutarate dehydrogenase (alpha-KGDH) when incubated with frozen and thawed rat brain mitochondria (mitochondrial membranes). The time dependence of the inhibition of NADH-CoQ(1) reductase, PDHC, and alpha-KGDH by DHBT-NE-1 appears to be related to its oxidation, catalyzed by an unknown component of the inner mitochondrial membrane, to electrophilic intermediates which bind covalently to active site cysteinyl residues of these enzyme complexes. The latter conclusion is based on the ability of glutathione to block inhibition of NADH-CoQ(1) reductase, PDHC, and alpha-KGDH by scavenging electrophilic intermediates, generated by the mitochondrial membrane-catalyzed oxidation of DHBT-NE-1, forming glutathionyl conjugates, several of which have been isolated and spectroscopically identified. The possible implications of these results to the degeneration of neuromelanin-pigmented noradrenergic neurons in the locus ceruleus in Parkinson's disease are discussed.

PubMed Disclaimer

Publication types

MeSH terms